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The effects of decreasing the impulse transmitted by localized periodic pulses on the chaotic behavior of
homogeneous chains of coupled nonlinear oscillators are studied. It is assumed that when the oscillators are
driven synchronously, i.e., all driving pulses transmit the same impulse, the chains display chaotic dynamics.
It is shown that decreasing the impulse transmitted by the pulses of the two free end oscillators results in
regularization with the whole array exhibiting frequency synchronization, irrespective of the chain size. A
maximum level of amplitude desynchrony as the pulses of the two end oscillators narrow is typically found,
which is explained as the result of two competing universal mechanisms: desynchronization induced by
localized heterogeneous pulses and oscillation death of the complete chain induced by drastic decreasing of the
impulse transmitted by such localized pulses. These findings demonstrate that decreasing the impulse trans-
mitted by localized external forces can suppress chaos and lead to frequency-locked states in networks of
dissipative systems.
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Understanding synchronization and desynchronization
phenomena in networks of coupled oscillators �1� is cur-
rently a focus of research in physics �2�, biology �3�, and
technology �4�. A fundamental problem closely related to the
synchronization–desynchronization transition in the context
of chaotic arrays is the control of chaos �5�. In this regard,
previous studies have shown that chaos in coupled arrays of
damped, periodically forced, nonlinear oscillators can be
tamed by parametric disorder �6�, impurities �7�, localized
controlling resonant forces �8,9�, random shortcuts �10�, and
global disordered driving forces �11�. Usually, the arrays
studied have been assumed to have homogeneous forces. In
real-world systems, however, the periodic forces acting on
the oscillators often exhibit heterogeneous distributions hav-
ing different amplitudes and periods as well as different
wave forms. In this work, I discuss the heterogeneity-
induced regularization of homogeneous chains of coupled
chaotic oscillators by decreasing the impulse transmitted by
the driving forces acting on a minimal number of oscillators.
As the transmitted impulse is decreased, the emergence of
regular, frequency-locked dynamics typically occurs, while
desynchronization is due to the dispersion in the oscillator’s
amplitude. For sufficiently small transmitted impulse, the
phenomenon of oscillation death �quenching� typically oc-
curs, irrespective of the chain size. For the sake of clarity, the
findings are discussed through the analysis of one-
dimensional chains of damped kicked rotators. The chain is
described by the equations of motion

�̈n + Fcn2��t;m�sin �n = − ��̇n + k��n+1 + �n−1 − 2�n� ,

�̈i + Fcn2��t;m�sin �i = − ��̇i, �1�

where n=2, . . . ,N−1, i=1, N, �=��T ,m��2K�m� /T, T
and F are the forcing period and amplitude, respectively, � is
the damping coefficient, k is the coupling constant, cn�· ;m�
is the Jacobian elliptic function of parameter m, K�m� is the
complete elliptic integral of the first kind, and where the

shape parameter is taken as m=0 except for the two end
rotators that are subjected to pulses of variable width �m
� �0,1��. The wave form of the pulse is varied by solely
changing m between 0 and 1, such that by increasing m the
pulse becomes narrower, and for m�1 one recovers a peri-
odic sharply kicking excitation very close to the periodic �
function, but with finite amplitude and width as in real-world
impacts �see Fig. 1�. Observe that cn2 ��t ;m=0�
=cos2��t /T�, while in the other limit, m=1, the pulse area
vanishes. The Hamiltonian version of an isolated kicked ro-
tator subjected to trigonometric pulses ��=k=m=0, cf. Eq.
�1�� has been previously used to describe the center-of-mass
motion of cold cesium atoms in an amplitude-modulated
standing wave of light �12�. Equation �1� can be written in
terms of the scaled dimensionless time �� t�F. This scaling
serves to stress that there are only four independent param-
eters in this model: the number of rotators N, the scaled
period TF�T�F, the scaled damping coefficient �F�� /�F,
and the scaled coupling constant kF�k /F. For the parameter
values used in the present numerical simulations �TF=5.52,
�F=0.2�, each isolated rotator driven by trigonometric pulses
�m=0� displays chaotic behavior characterized by a positive
Lyapunov exponent �13�. Equation �1� was numerically inte-
grated using a fourth-order Runge-Kutta algorithm with a

FIG. 1. Pulse function p�t ;T ,m��cn2(2K�m�t /T ;m) �cf. Eq.
�1�� vs t /T for m=0 �thin line�, m=0.9993 �medium line�, and m
=1–10−14 �thick line�. The quantities plotted are dimensionless.
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time step d�=0.001. To visualize the global spatiotemporal
dynamics of chains, one calculates the average velocity

��jTF� �
1

N
�
n=1

N
d�n

d�
�jTF� , �2�

where j is an integer multiple of the pulse period TF, while
the degree of synchronization is characterized by the corre-
lation function

C�jTF� �
2

N�N − 1���il� cos	�i�jTF� − �l�jTF�
 , �3�

where the summation is over all pairs of rotators. Note that
C��� is 1�0� for the perfectly synchronized �desynchronized�
state.

Figure 2 shows the angular velocities of the first �blue
�black�� and central �red �gray�� rotators as well as the cor-
relation function at �=970TF , . . . ,1000TF vs the shape pa-
rameter for a chain of nine rotators. Typically, the individual
rotators go from chaos to stable equilibrium �oscillator
death� as the shape parameter increases from 0 to 1 while the
whole chain goes from perfect synchrony �at m=0� to perfect
trivial synchrony �at m=1� passing through desynchronized
states for m� �0,1�. The evolution of the desynchronized
states is characterized by the correlation function undergoing
an inverse period-doubling route as the shape parameter is
increased, which is preceded by an inverse interior crisis
when the coupling is sufficiently small �as for kF=1.6, cf.
Fig. 2�. While the strength of desynchronization generally

diminishes as coupling is increased, as expected, one typi-
cally finds that the correlation function exhibits a minimum
as a function of the shape parameter �at mmin� for sufficiently
large coupling values �as for kF=6, 10, cf. Fig. 2�. At this
minimum, all rotators present a 2TF periodic solution while
their amplitude distribution reaches a maximum range, as in
the example shown in Fig. 3. Thus the increase in the shape
parameter has a double effect on the chaotic chains, which
permits one to understand the appearance of a maximum

FIG. 4. �Color online� Bifurcation diagram of the �dimension-
less� average velocity � as a function of the �dimensionless� shape
parameter m. �a� Number of rotators N=5 and three values of the
coupling kF: 0.2 �triangles�, 0.1 �circles�, and 0.06 �rhombs�. �b�
Coupling kF=0.2 and three values of the number of rotators N: 5
�triangles�, 7 �circles�, and 8 �rhombs�.

FIG. 2. �Color online� Bifurcation diagrams of angular veloci-
ties of the end �blue �black�� and central �red �gray�� rotators and
correlation function as functions of the shape parameter for a chain
of N=9 rotators and three values of the coupling. The quantities
plotted are dimensionless.

FIG. 3. �Color online� Angular velocities �arbitrary units� of the
end �blue �black� line� and central �dots� rotators and their respec-
tive differences �red �gray� line� as a function of time �arbitrary
units� for a chain of N=3 rotators, coupling kF=0.5, and shape
parameters: �a� m=0; �b� m=0.3; �c� m=0.5; �d� m=0.8; �e� m
=0.9892�mmin; �f� m=0.999.
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desynchronization �at mmin� as this parameter is varied, pro-
vided the coupling is sufficiently large �hereafter referred to
as the strong coupling �SC� regime�. Indeed, while increas-
ing the shape parameter from 0 improves the
desynchronization-induced regularization of the chain, in the
sense that to optimize the frequency-locking to the forcing, it
simultaneously increases the heterogeneity-induced desyn-
chronization of the chain by increasing the amplitude disper-
sion on the one hand, and the reshaping-induced oscillation
death on the other. Indeed, the latter effect becomes domi-
nant for sufficiently narrow pulses: the equilibrium
��n ,d�n /d��= �0,0�, unstable when the rotators are un-
coupled, becomes attracting and suppresses the 2TF periodic
oscillations via an inverse supercritical Hopf bifurcation
�14�. Although the phenomenon of oscillation death is usu-
ally due to the interplay between high parameter dispersion
and strong coupling �15�, the present case provides an ex-
ample where it remains in the weak coupling �WC� regime,
as one observes in the instance shown in Fig. 4�a�. There is a
critical wave form corresponding to the shape parameter
value mc�0.9998, such that oscillation death occurs for m
�mc and the complete chain becomes trivially synchronized
irrespective of its size �cf. Fig. 4�b��. This critical value co-
incides with that from which the above equilibrium becomes
the resulting attractor for uncoupled rotators �13�. The de-
pendence of the impulse transmitted at the pulse wave form
corresponding to maximal desynchronization,

I�m = mmin� � �
0

TF

cn2
„2K�m��/TF;m = mmin…d� , �4�

on the coupling and the chain size is shown in Fig. 5. One
typically finds an exponential decay law for the coupling
dependence, and a linear law in the SC regime for the chain-
size dependence. Since an exponential decay law is a univer-
sal hallmark of unstable systems, one expects the present one
to remain valid for general damped, periodically driven ar-
rays. The WC regime exhibits greater complexity, as can be
seen in the instance shown in Fig. 6. Indeed, one typically
finds windows where the chains present chaotic desynchro-
nized states interspersed with windows containing regular
states with different degrees of synchronization as well as
abrupt transitions between them via crisis phenomena
�see Fig. 6�. Beyond the WC regime the synchronization of
periodic states increases continuously as the coupling is
increased.

To summarize, it has been shown that localized reshaping
of the driving forces leads to transitions from chaotic to
frequency-locked behavior in chains of dissipative coupled
oscillators. It should be stressed that the above regularization
scenario also occurs in two-dimensional arrays as well as in
other coupled systems �16�. The present general mechanism
to regularize chaotic arrays has potential applications in
those cases where the intrinsic parameters of a system cannot
be altered while any kind of periodic behavior is preferred to
chaos, such as in superconducting Josephson arrays �17� or
semiconductor laser arrays �18�.
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FIG. 5. �Color online� Normalized transmitted impulse associ-
ated with maximal desynchronization I�m=mmin� / I�m=0� as a
function of the coupling kF for N=4 �squares� and N=5 �circles�
rotators �a� and the number of rotators N for kF=10 �b�. Black lines
denote exponential �0.498 14+0.281 35 exp�−1.9322kF�, 0.512 76
+1.374 78 exp�−kF /0.166 77�+0.366 67 exp�−kF /0.654 32� for N
=4,5, respectively� and linear �0.332 73+0.019 86N� fits. The
quantities plotted are dimensionless.

FIG. 6. �Color online� Bifurcation diagram of the correlation
function as a function of the coupling for N=5 rotators and m
=0.5. The expansion shows in detail the transitions associated with
the WC regime. The quantities plotted are dimensionless.
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